MATH4060 Tutorial 3

9 February 2023

Problem 1 (Exercise 2). Find the order of growth of the following entire functions:
(a) $p(z)$ where p is a polynomial.
(b) $f(z)=e^{b z^{n}}$ for $b \neq 0$.
(c) $g(z)=e^{e^{z}}$.
(a) Assume that $p(z)=a_{n} z^{n}+\cdots+a_{0}\left(a_{n} \neq 0\right)$. We claim that the order of growth is 0 . Indeed, for any $\rho>0$, we have

$$
\frac{|p(z)|}{e^{|z|^{\rho}}} \leq \frac{a_{n}|z|^{n}+\cdots+\left|a_{0}\right|}{e^{|z|^{\rho}}} \rightarrow 0
$$

as $|z| \rightarrow \infty$, so $|p(z)| \leq A_{\rho} e^{|z|^{\rho}}$ for some $A_{\rho}>0$. Taking infimum implies that $\rho_{p}=0$.
(b) It is clear that $\left|e^{b z^{n}}\right| \leq e^{|b||z|^{n}}$, so $\rho_{f} \leq n$. On the other hand, write $b=r_{0} e^{i \theta_{0}}$, where $r_{0}>0$, and consider $z=r e^{-i \theta_{0} / n}$ for any $r>0$, so that

$$
|f(z)|=\left|e^{b z^{n}}\right|=e^{r_{0} r^{n}}
$$

If $|f(z)| \leq A e^{B|z|^{\rho}}$, taking $r \rightarrow \infty$ in the above shows that this is only possible when $\rho \geq n$. So $\rho_{f}=n$.
(c) For any $\rho>0$, we have

$$
\lim _{x \rightarrow \infty} \frac{e^{e^{x}}}{e^{B x^{\rho}}}=\lim _{x \rightarrow \infty} e^{e^{x}-B x^{\rho}}=\infty
$$

So $\rho_{g}=\infty$.
Problem 2 (Exercise 10a). Find the Hadamard product for $f(z)=e^{z}-1$.
Method 1: It is easy to see that $\rho_{f}=1$ and that the zeros of f are $a_{n}=2 \pi i n, n \in \mathbb{Z}$ (each has order 1). Hadamard's theorem implies

$$
\begin{aligned}
f(z) & =e^{a z+b} z \prod_{n=1}^{\infty} E_{1}\left(z / a_{n}\right) E_{1}\left(z / a_{-n}\right) \\
& =e^{a z+b} z \prod_{n=1}^{\infty}\left(1-z / a_{n}\right) e^{z / a_{n}}\left(1+z / a_{n}\right) e^{-z / a_{n}} \\
& =e^{a z+b} z \prod_{n=1}^{\infty}\left(1+z^{2} / 4 \pi^{2} n^{2}\right) .
\end{aligned}
$$

We want to determine a and b. Note that if z_{0} is a zero of an entire function f and $f(z)=\left(z-z_{0}\right) g(z)$, then $f^{\prime}\left(z_{0}\right)=g\left(z_{0}\right)$ and $f^{\prime \prime}\left(z_{0}\right)=2 g^{\prime}\left(z_{0}\right)$. Here, set $z_{0}=0$ and $f(z)=e^{z}-1$, so $f^{\prime}(0)=f^{\prime \prime}(0)=1$; write $g(z)=e^{a z+b} h(z)=e^{a z+b} \prod_{n=1}^{\infty} h_{n}(z)$, where $h_{n}(z)=1+z^{2} / 4 \pi^{2} n^{2}$. Since $1=f^{\prime}(0)=g(0)=e^{b}$, we may take $b=0$. On the other hand, we compute that

$$
\frac{g^{\prime}(z)}{g(z)}=\frac{a e^{a z} h(z)+e^{a z} h^{\prime}(z)}{e^{a z} h(z)}=a+\frac{h^{\prime}(z)}{h(z)}=a+\sum_{n=1}^{\infty} \frac{h_{n}^{\prime}(z)}{h_{n}(z)}
$$

by Proposition 3.2 (ii). Since $g(0)=1$ and $h_{n}^{\prime}(0)=0$, we have $g^{\prime}(0)=a$. Then $1=f^{\prime \prime}(0)=2 g^{\prime}(0)$ implies that $a=1 / 2$. (In fact, for this example, one could also deduce that $a=1 / 2$ from

$$
e^{z / 2}-e^{-z / 2}=e^{(a-1 / 2) z}\left[z \prod_{n=1}^{\infty}\left(1+z^{2} / 4 \pi^{2} n^{2}\right)\right]
$$

by observing that the LHS and the bracketed term are both odd functions.)
Method 2: Using the Hadamard product for sine, i.e.

$$
\sin z=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{\pi^{2} n^{2}}\right)=z \prod_{n \neq 0} E_{1}\left(\frac{z}{\pi n}\right)
$$

we have

$$
\begin{aligned}
e^{z}-1 & =e^{z / 2}\left(e^{z / 2}-e^{-z / 2}\right)=2 i e^{z / 2} \sin (-i z / 2) \\
& =2 i e^{z / 2}(-i z / 2) \prod_{n \neq 0} E_{1}(z /(2 \pi i n)) \\
& =e^{z / 2} z \prod_{n \neq 0} E_{1}(z /(2 \pi i n)) .
\end{aligned}
$$

Problem 3 (Exercise 17b, Pringsheim interpolation formula). Let $\left\{a_{k}\right\}_{k=0}^{\infty}$ be a sequence of distinct complex numbers such that $a_{0}=0$ and $\lim _{k \rightarrow \infty}\left|a_{k}\right|=\infty$. Given complex numbers $\left\{b_{k}\right\}_{k=0}^{\infty}$, show that there exists an entire function F that satisfies $F\left(a_{k}\right)=b_{k}$ for all k.

Let $E(z)$ denote a Weierstrass product associated with $\left\{a_{k}\right\}$. For $k \geq 0$, define the interpolation factors

$$
\phi_{k}(z)=\frac{E(z)}{E^{\prime}\left(a_{k}\right)\left(z-a_{k}\right)} .
$$

We claim that ϕ_{k} is well-defined, entire and satisfies $\phi_{k}\left(a_{j}\right)=\delta_{k j}$ (using the Kronecker delta notation). Indeed, since the a_{k} 's are distinct, $E(z)$ has simple zeros at the a_{k} 's, and if $E(z)=\left(z-a_{k}\right) g_{k}(z), E^{\prime}\left(a_{k}\right)=g_{k}\left(a_{k}\right) \neq 0$. Hence, ϕ_{k} is well-defined, entire, and satisfies $\phi_{k}\left(a_{k}\right)=1$. If $k \neq j$, then $E\left(a_{j}\right)=0$ and $a_{j}-a_{k} \neq 0$, so $\phi_{k}\left(a_{j}\right)=0$.

Next, define

$$
F(z)=b_{0} \phi_{0}(z)+\sum_{k=1}^{\infty} b_{k} \phi_{k}(z)\left(\frac{z}{a_{k}}\right)^{m_{k}}
$$

for integers $m_{k} \geq 1$ specified as follow: let $c_{k}=\left|b_{k} / E^{\prime}\left(a_{k}\right)\right|$ and choose $m_{k} \geq 1$ such that

$$
\frac{c_{k}}{2^{m_{k}-1}} \leq \frac{1}{2^{k}}
$$

Note that $F\left(a_{k}\right)=b_{k}$ for all k by construction. To prove that $F(z)$ is entire, it suffices to show that the series converges uniformly in every closed disc $\bar{D}_{R}(0)$. Fix $R>0$ and let $|E(z)| \leq B_{R}$ on $|z| \leq R$ for some $B_{R}>0$. Consider ${ }^{1} K \in \mathbb{N}$ such that $\left|a_{j}\right| \geq \max \left\{2 R, B_{R}\right\}$ for $j \geq K$. For any $k \geq K$ and $|z| \leq R$, we have

$$
\begin{aligned}
\left|\sum_{j=k}^{\infty} b_{j} \phi_{j}(z)\left(\frac{z}{a_{j}}\right)^{m_{j}}\right| & \leq \sum_{j=k}^{\infty} \frac{B_{R}|z|}{\left(\left|a_{j}\right|-|z|\right)\left|a_{j}\right|} c_{j}\left|\frac{z}{a_{j}}\right|^{m_{j}-1} \\
& \leq \sum_{j=k}^{\infty} \frac{B_{R} R}{R B_{R}} \frac{c_{j}}{2^{m_{j-1}}} \leq \sum_{j=k}^{\infty} \frac{1}{2^{j}}=\frac{1}{2^{k-1}} \rightarrow 0
\end{aligned}
$$

uniformly in z, as $k \rightarrow \infty$.

[^0]Problem 4 (Exercise 11). Show that if f is an entire function of finite order that omits two values, then f is a constant.

Suppose f omits the value $a \in \mathbb{C}$. Hadamard's theorem implies that the nowhere vanishing function $f(z)-a=e^{p(z)}$ for some polynomial $p(z)$. If p is not a constant, the fundamental theorem of algebra implies that $\operatorname{Image}(p)=\mathbb{C}$. Since the exponential function assumes every nonzero value, $f(z)=e^{p(z)}+a$ can only omit the value a in this case.

[^0]: ${ }^{1}$ I slightly simplified the proof that appeared in the tutorial.

