MATH4060 Tutorial 3

9 February 2023

Problem 1 (Exercise 2). Find the order of growth of the following entire functions:

- (a) p(z) where p is a polynomial.
- (b) $f(z) = e^{bz^n}$ for $b \neq 0$.
- $(c) \ g(z) = e^{e^z}.$

(a) Assume that $p(z) = a_n z^n + \cdots + a_0$ $(a_n \neq 0)$. We claim that the order of growth is 0. Indeed, for any $\rho > 0$, we have

$$\frac{|p(z)|}{e^{|z|^{\rho}}} \le \frac{a_n |z|^n + \dots + |a_0|}{e^{|z|^{\rho}}} \to 0$$

as $|z| \to \infty$, so $|p(z)| \le A_{\rho} e^{|z|^{\rho}}$ for some $A_{\rho} > 0$. Taking infimum implies that $\rho_p = 0$. (b) It is clear that $|e^{bz^n}| \le e^{|b||z|^n}$, so $\rho_f \le n$. On the other hand, write $b = r_0 e^{i\theta_0}$, where $r_0 > 0$, and consider $z = r e^{-i\theta_0/n}$ for any r > 0, so that

$$|f(z)| = |e^{bz^n}| = e^{r_0 r^n}.$$

If $|f(z)| \leq Ae^{B|z|^{\rho}}$, taking $r \to \infty$ in the above shows that this is only possible when $\rho \geq n$. So $\rho_f = n$.

(c) For any $\rho > 0$, we have

$$\lim_{x \to \infty} \frac{e^{e^x}}{e^{Bx^{\rho}}} = \lim_{x \to \infty} e^{e^x - Bx^{\rho}} = \infty.$$

So $\rho_g = \infty$.

Problem 2 (Exercise 10a). Find the Hadamard product for $f(z) = e^z - 1$.

Method 1: It is easy to see that $\rho_f = 1$ and that the zeros of f are $a_n = 2\pi i n$, $n \in \mathbb{Z}$ (each has order 1). Hadamard's theorem implies

$$f(z) = e^{az+b} z \prod_{n=1}^{\infty} E_1(z/a_n) E_1(z/a_{-n})$$

= $e^{az+b} z \prod_{n=1}^{\infty} (1-z/a_n) e^{z/a_n} (1+z/a_n) e^{-z/a_n}$
= $e^{az+b} z \prod_{n=1}^{\infty} (1+z^2/4\pi^2 n^2).$

We want to determine a and b. Note that if z_0 is a zero of an entire function f and $f(z) = (z - z_0)g(z)$, then $f'(z_0) = g(z_0)$ and $f''(z_0) = 2g'(z_0)$. Here, set $z_0 = 0$ and $f(z) = e^z - 1$, so f'(0) = f''(0) = 1; write $g(z) = e^{az+b}h(z) = e^{az+b}\prod_{n=1}^{\infty}h_n(z)$, where $h_n(z) = 1 + z^2/4\pi^2n^2$. Since $1 = f'(0) = g(0) = e^b$, we may take b = 0. On the other hand, we compute that

$$\frac{g'(z)}{g(z)} = \frac{ae^{az}h(z) + e^{az}h'(z)}{e^{az}h(z)} = a + \frac{h'(z)}{h(z)} = a + \sum_{n=1}^{\infty} \frac{h'_n(z)}{h_n(z)},$$

by Proposition 3.2 (ii). Since g(0) = 1 and $h'_n(0) = 0$, we have g'(0) = a. Then 1 = f''(0) = 2g'(0) implies that a = 1/2. (In fact, for this example, one could also deduce that a = 1/2 from

$$e^{z/2} - e^{-z/2} = e^{(a-1/2)z} \left[z \prod_{n=1}^{\infty} (1 + z^2/4\pi^2 n^2) \right]$$

by observing that the LHS and the bracketed term are both odd functions.) Method 2: Using the Hadamard product for sine, i.e.

$$\sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2} \right) = z \prod_{n \neq 0} E_1\left(\frac{z}{\pi n}\right),$$

we have

$$e^{z} - 1 = e^{z/2}(e^{z/2} - e^{-z/2}) = 2ie^{z/2}\sin(-iz/2)$$
$$= 2ie^{z/2}(-iz/2)\prod_{n\neq 0} E_1(z/(2\pi i n))$$
$$= e^{z/2}z\prod_{n\neq 0} E_1(z/(2\pi i n)).$$

Problem 3 (Exercise 17b, Pringsheim interpolation formula). Let $\{a_k\}_{k=0}^{\infty}$ be a sequence of distinct complex numbers such that $a_0 = 0$ and $\lim_{k\to\infty} |a_k| = \infty$. Given complex numbers $\{b_k\}_{k=0}^{\infty}$, show that there exists an entire function F that satisfies $F(a_k) = b_k$ for all k.

Let E(z) denote a Weierstrass product associated with $\{a_k\}$. For $k \ge 0$, define the interpolation factors

$$\phi_k(z) = \frac{E(z)}{E'(a_k)(z - a_k)}$$

We claim that ϕ_k is well-defined, entire and satisfies $\phi_k(a_j) = \delta_{kj}$ (using the Kronecker delta notation). Indeed, since the a_k 's are distinct, E(z) has simple zeros at the a_k 's, and if $E(z) = (z - a_k)g_k(z)$, $E'(a_k) = g_k(a_k) \neq 0$. Hence, ϕ_k is well-defined, entire, and satisfies $\phi_k(a_k) = 1$. If $k \neq j$, then $E(a_j) = 0$ and $a_j - a_k \neq 0$, so $\phi_k(a_j) = 0$.

Next, define

$$F(z) = b_0 \phi_0(z) + \sum_{k=1}^{\infty} b_k \phi_k(z) \left(\frac{z}{a_k}\right)^{m_k}$$

for integers $m_k \ge 1$ specified as follow: let $c_k = |b_k/E'(a_k)|$ and choose $m_k \ge 1$ such that

$$\frac{c_k}{2^{m_k-1}} \le \frac{1}{2^k}.$$

Note that $F(a_k) = b_k$ for all k by construction. To prove that F(z) is entire, it suffices to show that the series converges uniformly in every closed disc $\overline{D}_R(0)$. Fix R > 0and let $|E(z)| \leq B_R$ on $|z| \leq R$ for some $B_R > 0$. Consider¹ $K \in \mathbb{N}$ such that $|a_j| \geq \max\{2R, B_R\}$ for $j \geq K$. For any $k \geq K$ and $|z| \leq R$, we have

$$\left| \sum_{j=k}^{\infty} b_j \phi_j(z) \left(\frac{z}{a_j} \right)^{m_j} \right| \le \sum_{j=k}^{\infty} \frac{B_R |z|}{(|a_j| - |z|)|a_j|} c_j \left| \frac{z}{a_j} \right|^{m_j - 1}$$
$$\le \sum_{j=k}^{\infty} \frac{B_R R}{R B_R} \frac{c_j}{2^{m_{j-1}}} \le \sum_{j=k}^{\infty} \frac{1}{2^j} = \frac{1}{2^{k-1}} \to 0$$

uniformly in z, as $k \to \infty$.

 $^{^1\}mathrm{I}$ slightly simplified the proof that appeared in the tutorial.

Problem 4 (Exercise 11). Show that if f is an entire function of finite order that omits two values, then f is a constant.

Suppose f omits the value $a \in \mathbb{C}$. Hadamard's theorem implies that the nowhere vanishing function $f(z) - a = e^{p(z)}$ for some polynomial p(z). If p is not a constant, the fundamental theorem of algebra implies that $\text{Image}(p) = \mathbb{C}$. Since the exponential function assumes every nonzero value, $f(z) = e^{p(z)} + a$ can only omit the value a in this case.